
MARK-IT: A MARKING USER INTERFACE FOR

CUTTING DECOMPOSITION TIME

Nicholas C. Yang1 Andrew S. Forsberg1 Jason F. Shepherd2 Ricardo M. Garcia2

Karl G. Merkley3

1Brown University, Providence, RI, U.S.A. {nyang, asf}@cs.brown.edu
2Sandia National Laboratories, Albuquerque, NM, U.S.A. {jfsheph, ricgarc}@sandia.gov

3Elemental Technologies, Inc., American Fork, UT, U.S.A. karl@elemtech.com

ABSTRACT

We present Mark-It, a marking user interface that reduced the time to decompose a set of CAD models exhibiting a
range of decomposition problems by as much as fifty percent. Instead of performing about 50 mesh decomposition
operations using a conventional UI, Mark-It allows users to perform the same operations by drawing 2D marks in the
context of the 3D model. The motivation for this study was to test the potential of a marking user interface for the
decomposition aspect of the meshing process. To evaluate Mark-It, we designed a user study that consisted of a brief
tutorial of both the non-marking and marking UIs, performing the steps to decompose four models contributed to us
by experienced meshers at Sandia National Laboratories, and a post-study debriefing to rate the speed, preference,
and overall learnability of the two interfaces. Our primary contributions are a practical user interface design for
speeding-up mesh decomposition and an evaluation that helps characterize the pros and cons of the new user interface.

Keywords: meshing, decomposition, marking user interface, gestural commands, time-to-mesh, post-

WIMP

1. INTRODUCTION

The goal of meshing is to produce a discretization of
a space, a mesh, that is suitable for the simulation
of a given engineering problem. Meshing, particularly
hexahedral meshing, is a complicated procedure that
often requires the use of rather sophisticated, inter-
active tools (i.e. CUBIT, TurboMesh, SolidMesh) to
produce a usable mesh. For the user, decomposition
can be the most time-consuming part of the meshing
process; it includes determining and specifying oper-
ations such as dividing and simplifying a model’s ge-
ometry into more primitive pieces. Decomposition is
usually required before an automatic meshing algo-
rithm can be applied to components of a model. In
many cases, the decomposition as a whole cannot be
automatically performed and must be done manually;
oftentimes, the user is an irremovable part of the mesh-
ing process [1]. Algorithmic and user interface (UI)

research are the current techniques for alleviating this
bottleneck . This study focuses on the latter by testing
whether the use of marking gestures, in the context of
the 3D tasks at hand, can significantly reduce decom-
position time. As noted in [2], any type of automation
or optimization in decomposition could “vastly reduce
the time to mesh for hexahedral elements.”

Decomposition operations must be accessed through
a user interface in any meshing system. Two popu-
lar UI styles are Windows-Icon-Menu-Pointer (WIMP)
and command-line. In general, user interfaces have re-
mained mostly unchanged for the past two decades and
predominantly consist of WIMP UIs [3]. Traditional
WIMP UIs are widely popular mainly because they
have proven to be relatively easy-to-learn. Command-
line UIs originated much longer ago but are sometimes
preferred for systems with large numbers of operators
and operands. Oftentimes, command-line UIs are sig-



nificantly more efficient than WIMP UIs once mas-
tered.

In this study, we applied the concept of a post-WIMP
UI to a sophisticated meshing system, Sandia National
Laboratories’ CUBIT, which has been in development
for about 8 years and combines the best aspects of
both conventional WIMP and command-line UIs. CU-
BIT is a 2D and 3D finite element mesh generation
tool that produces meshes for finite element analysis.
Development for the marking interface was done ex-
clusively in CUBIT, but we expect the concepts of
the implemented marking UI to extend over to other
meshing systems as well.

Specifically, we developed a post-WIMP marking UI,
which we have termed “Mark-It.” With Mark-It, users
draw 2D lines in the context of 3D Computer-Aided
Design (CAD) models to specify meshing operations
and operands. We hypothesized a marking UI would
be effective due to the graphical nature of meshing
tasks. The intent was to discover the advantages
and disadvantages of a specific marking UI targeted
at mesh decomposition. Results from this study are
preliminary data that show how effective a marking
post-WIMP interface could be in a meshing context.
Our results and evaluation suggest that for purposes
of meshing, our post-WIMP marking interface is faster
than most traditional WIMP interfaces. Furthermore,
we also received feedback about several possible im-
provements to our marking UI that would make it
faster and easier to learn. The advantages and dis-
advantages of both WIMP and post-WIMP interfaces
are discussed in [3].

The non-marking CUBIT interface we compared
Mark-It to consists of toolbars, menus, point-and-click
selection, and a command-line. Users in our study
were asked to click on separate toolbar icons or to use
hot-keys in order pan, rotate, zoom, and enter certain
entity (e.g. surface, volume, curve, vertex) selection
modes when using the non-marking interface. To ex-
ecute a decomposition command, users had to select
appropriate tools using the WIMP GUI and then type
in the commands based on entity IDs. Mark-It aims
to extend meshing UIs of this type to go beyond using
the mouse in the 3D graphics window for only picking
and navigating. It allows the user to use the mouse to
perform several different decomposition operations by
drawing directly on a model.

2. RELATED WORK

Time-to-mesh is the total time it takes to create a
finite element mesh given a geometric model. A com-
mon goal of many researchers is to minimize the time-
to-mesh. As stated above, decomposition is neces-
sary because many meshing algorithms require pre-

processing of the geometric model. In many cases,
especially cases with high problem complexity, a user
must manually make decisions, using a tool such as
CUBIT, to prepare a model for a given meshing al-
gorithm. These human-made decisions can improve
overall efficiency in a way automatic algorithms can-
not. For example, the user may improve efficiency
by reducing the total number of elements created, im-
proving the quality of elements created, or by mini-
mizing the number of steps to achieve the required de-
composition. Nevertheless, this section goes into more
detail on non-user-based algorithmic approaches to re-
duce the time-to-mesh and also discusses related work
in marking post-WIMP UIs.

2.1 Algorithmic Approaches

Historically, a great deal of effort has been spent in
reducing the time-to-mesh by introducing new mesh-
ing algorithms or improving the scope of existing al-
gorithms. Because of limitations in current hexahe-
dral meshing algorithms, algorithms for decomposing
models into mesh-able primitive shapes have received
a great deal of attention. Several examples of algo-
rithmic work to reduce the time-to-mesh will be high-
lighted in this section.

Two of the most highly used algorithms in hexahedral
meshing today include the “mapping” and “sweep-
ing” methods [4][5]. Enhancements to each of these
algorithms have been made specifically to reduce the
amount of decomposition necessary to produce a mesh,
thereby speeding up the time to produce the mesh [6]
[1] [7]. Specifically, the “submapping” algorithm [1]
and the many-to-many sweeping tools [8][9][10] [11]
are the algorithms used heavily in CUBIT today. Both
of these techniques are geometry pre-processing algo-
rithms that extend the existing “primitive” algorithm.
Many-to-one sweeping and multi-sweeping involve ex-
truding surface meshes from multiple source surfaces,
as opposed to the conventional sweeping algorithm
which allows only one source surface. Volume submap-
ping involves breaking up volumes into sub-regions
that are quicker and easier to mesh as separate en-
tities, instead of as a whole, using standard mapping
transformations.

Another study tried to completely automate the de-
composition process entirely by using a technique
called Feature Recognition (FR), which was able to au-
tomatically generate mesh-able volumes directly from
a class of imported ACIS models [12]. Although the
results of FR were impressive, the implemented sys-
tem was not general enough to supplant the need for
human interaction. The implemented FR system also
lacked some options, such as the ability to specify au-
tomatic meshing patterns to guide the decomposition.



Several other algorithmic approaches for reducing
time-to-mesh exist as well, and not surprisingly, none
are fully automatic. [13] reduces datasets to wavelet
representations and coefficients, but it also requires
obtaining triangulation calculations in a lookup ta-
ble and performing inverse wavelet transformations.
[14] uses features on a “reference mesh” to automati-
cally generate mesh-able volumes on a desired model,
but consequently, it requires having to find the appro-
priate reference meshes for specific geometries. [15],
[16], [17], and [18] try to improve time-to-mesh by
using an octree approach to produce an automatic,
all-hexahedral meshing algorithm. However, these ap-
proaches impose some additional work for dealing with
elements on the boundary, and they do not inherently
work well for producing contiguous meshes across ma-
terial interfaces or boundaries of the simulation model.

The goal of these techniques is the same as the goal of
this study: to reduce the time-to-mesh. Rather than
improving on the underlying algorithms to further au-
tomate the meshing process, Mark-It focuses primarily
on optimizing the user interface.

2.2 Post-WIMP UIs

Several research studies have shown the potential of
integrating marking UIs into various application areas,
as is discussed in the following paragraphs.

In [19] gestural movements and marks were used to
create 3D geometry in a program called SKETCH.
Mark-It also uses gestural marks to perform certain
operations, but it is different because it contains a con-
siderably greater number of gestures. There is no sim-
ple set of SKETCH-like gestures that can be directly
applied to mesh decomposition.

In [20], a stylus pen was used in combination with a
marking menu for composing music. This post-WIMP
interface received much positive feedback and was even
noted by many users to be preferred over existing al-
ternatives. [20] relates to Mark-It in a number of ways.
First, both use a marking interface involving gestures
and marking-menu-like mechanisms. Second, both in-
terfaces call for a sensible approach to learning and
teaching a gestural interface. Third, they both ap-
ply the idea of being able to draw what is desired di-
rectly in the graphics window. The main differences
between [20] and Mark-It is the number of commands
supported and the dimensionality of the problem do-
mains.

In [21], which specifically studied the use of marking
menus, a radial menu or straight-line marks were used
to select operations to perform. The study showed
that once learned, marks were used more often and
were more efficient, on average being 3.5 times faster
than conventional pull-down menus. There is a noted

learning curve, however. Both the speedup and learn-
ing curve are expected in Mark-It as well. [21] only
implemented menus containing even numbers of op-
erations, where each menu contained 12 operations
at most, because it was determined in [22] that such
a setup tended to increase user performance. Due
to the large number of possible decomposition com-
mands, Mark-It was implemented as a variation of
such a marking menu system, using more than just
radial and straight-line marks. The number of opera-
tions is only bounded by the number of distinct marks
that can be recognized and learned by the user. This
implementation was intended to address the limita-
tion of traditional marking menus by combining the
advantages of marking menus with a gesture recogni-
tion system.

3. THE TWO INTERFACES

3.1 Non-Marking CUBIT UI

Figure 1: The CUBIT window. In the non-marking UI,
users must select modes either by using the toolbars or
by using corresponding shortcut keys on the keyboard.
Modes include entity (surface/volume/curve/vertex) se-
lection and camera pan/zoom/translate. Selection is re-
quired to discover IDs of model entities. At the bottom
is a command-line prompt for users to type in commands
to execute on entities, based on IDs.

The original CUBIT UI’s decomposition operations
were primarily executed using combinations of tool-
bars, menus, key presses, mouse interactions, and a



command-line window. Many operations can be in-
voked through either 2D widgets or the command-line.
The mouse is used to change modes using the toolbar,
to perform camera movements, and to make entity se-
lections to find IDs. Figure 1 shows a screenshot of the
CUBIT window. All of the toolbar commands used in
this study have corresponding shortcut keys on the
keyboard. It is also possible to use abbreviations in
typed commands. Many commands require param-
eters. Parameters include ID numbers, coordinates,
and fractional values. Specifying the right coordinates
and fractions may require some previous knowledge of
where the model is located in world-space, relative to
the origin.

Figure 2: In this example, the four small surfaces drawn
in blue that connect the rectangular solid to the cube are
to be removed using the “tweak surface replace” com-
mand. In the non-marking UI, the user would need to
know the IDs of all 5 surfaces and then type in or echo
those IDs to the prompt. Using the marking UI, the user
selects the four surfaces and then draws a “tweak sur-
face replace” mark starting from the plane of the cube,
as illustrated.

The syntax of typed commands must be known
by the user. There is extensive documentation on
CUBIT’s command-line syntax available online at
http://cubit.sandia.gov. At least 1000 different types
of commands exist in CUBIT. While a complete lan-
guage of marking gestures has not been devised for all
of the commands, we believe that a marking interface
for just the most common operations would still yield
a significant improvement on the time-to-mesh.

At times, certain entities may not be selectable due
to other occluding entities. For such cases, the user
can use the “visibility off” command to hide occluding
entities. Alternatively, the tab key can be used to cycle
through the set of entities appearing underneath the
cursor.

3.2 Marking CUBIT UI

The marking UI is intended to simplify the overall
user interface for executing decomposition commands.
Most interactions are done right in the graphics win-
dow and involve just the mouse. The hope is that
this is fast, intuitive, and direct. In the WIMP GUI,
users must frequently switch between graphics win-
dows, toolbars, menus, and buttons. The time taken
to switch between different panels or parts of the in-
terface is nontrivial.

The marking interface does not rely on toolbar icon
selections. All camera operations are done using a sin-
gle mouse button [23]. Decomposition operations are
performed by drawing marks with the left mouse but-
ton. The user executes an operation by first clicking to
select one or more entities and then drawing an appro-
priate mark, possibly relative to a specific model fea-
ture, to execute a desired command. Different types of
entities are selected by toggling modes; from the “sur-
face selection” mode, the user double-clicks to enter or
exit “body selection” mode and triple-clicks for “curve
selection” mode. To perform an operation on all the
entities in a model, the user should not manually select
any entities.

There are many possible marks, making it hard to re-
member or distinguish some of the commands. Al-
though the implemented system contains only a subset
of the full range of CUBIT commands, the marking
UI still implements over 50 different CUBIT opera-
tions, which can be overwhelming for beginners. Con-
sequently, a primitive help system was implemented
to draw help text or hints directly inside the graphics
to give the user a better idea about how to execute
different commands.

When a user draws a mark that corresponds to a valid
command, a label will appear by the cursor, denoting
the command that will be executed if the user releases
the button at that moment. If the user makes a mis-
take while drawing a mark, the user may recover by
moving the cursor to the cancel area, a circle at the
start of the mark, release the button and draw the
mark again. Examples of mark drawing are illustrated
in Figures 2 and 3.

Mark-It’s novel gesture recognition algorithm was in-
spired by marking menus [21]. The recognition system
tracks which quadrants are intersected, relative to the
mark’s initial click point. Because the implemented
gesture recognition is based on quadrants and which
quadrant the user initially moves the cursor into, axis
lines are drawn whenever the user makes a mark. De-
pending on which direction the user initially moves the
mouse, certain commands will become valid or invalid.
If the user holds down the left mouse button without
moving, hints on which quadrant to start a particu-



Figure 3: An example of drawing a mark to execute the
command “tweak surface replace.” Notice that axis lines
are drawn at the start of the mark, to show the differ-
ent quadrants, along with a circle denoting the cancel
area. Because the user moved into the upper-right quad-
rant first, only the hints for that quadrant remain on
the screen. When the user drags the mouse such that it
makes the correct mark for “tweak surface replace,” the
command label appears by the cursor, as illustrated.

lar mark in are displayed. An illustration of all the
possible hints in “surface selection” mode is shown in
Figure 4. If the user enters the wrong initial quadrant,
the user should cancel and draw the mark again.

For operations that require the user to specify a cer-
tain number, coordinates or fractions, the marking UI
utilizes a “virtual slider” mechanism, which allows the
user to drag left or right from any location to adjust
a specific value. To confirm and select a value, the
user need only hold down the left mouse button with-
out moving for one second before releasing. Cancelling
from the virtual slider consists of clicking once without
moving the mouse.

Some operations require selecting the x, y or z axis
(e.g. cutting perpendicular to the x axis) or selecting
a group of vertices. When an axis selection is required,
a tri-colored axis will be drawn at the relevant point on
the model. The user clicks and drags from a point off
the model until the “selection line” turns red, green,
or blue before releasing the mouse button to make an
x, y, or z axis selection, respectively (see Figure 5).
The user can cancel at any time by bringing the cursor
back to the axis origin before releasing. For selecting
vertex groups, the user must click to select or deselect
vertices. The user will only be allowed to select as
many vertices as the operation will allow. To accept
a vertex group selection and execute the operation,

Figure 4: In the marking UI, when the user holds down
the left mouse button without moving, hints for which
quadrant to begin a mark in are displayed. The illustrated
hints are for the “surface selection” mode.

the user makes a check-mark gesture (Figure 6, and to
cancel, the user draws a line diagonally downright.

To deal with overlapping entities, the marking UI uses
“cached” and “uncached” hiding, which allows users
to hide surfaces and at the same time specify which
hidden entities to use in the subsequently chosen op-
eration. Because there is no mechanism for arbitrarily
selecting which entities to hide and unhide, especially
as the number of hidden entities increases, users should
cache-hide all entities that they want to be parameters
in the operation and use uncached-hiding for entities
that are in the way (and need to be hidden) but should
not be part of the operation. This implementation is
just one possible design for handling overlapping enti-
ties in the marking interface. It should be noted that
other methods may be implemented to replace this.

4. RESULTS AND DISCUSSION

To evaluate the effectiveness of the marking interface
in comparison to the original command-line based in-
terface, we had ten people at Brown University learn
both UIs in a brief 15 minute warm-up tutorial and
then decompose four models twice, one time for each
UI. Each user was given a packet with instructions on
how to use each UI to mesh the 4 models. The instruc-
tions for each model consisted of three columns, one
for a picture of the model at the current decomposition
step, one for a description about how to use the non-
marking UI to execute commands, and the last column
for instructions and picture references on how to use
the marking UI to draw marks. We also had a refer-



Figure 5: Selecting an axis. A “selection line” is drawn
from the cursor to the axis origin. When the line changes
to the corresponding axis color, the user can release the
mouse button to select that axis. In this example, the
body is being cut by a plane perpendicular to the x-axis,
so a corresponding cutting plane is also drawn for this
x-axis selection.

ence sheet of all the possible marks available for users
to look at if they so desired (see Appendix). Because
we did not require users to have any previous knowl-
edge of CUBIT or decomposition, we allowed them
to ask questions when they needed help remembering
commands, had trouble completing steps in the pro-
cedure, or were confused about the general procedure.
After users completed the study, they were asked to fill
out a questionnaire that asked them to rate the learn-
ability, speed, and preference of one interface over the
other.

Each session lasted about 1-2 hours, depending on how
well the user adapted to and learned the CUBIT sys-
tem. We suspect that the time it took was highly
correlated to the users’ background experience, par-
ticularly experience having to do with 3D modeling
or CAD programs. None of the users noted any dis-
comfort, distortion in vision, fatigue, or disorientation
during the study.

In addition to the marking UI, we also allowed users
to try using two other devices in conjunction with the
marking UI as post-WIMP options. We had a free
3D tracker with a 2-stage push-button that was capa-
ble of rotating and translating the camera, depending
on whether the user pushed the button softly or with
more force. Also installed was a Wacom tablet for
helping users to draw marks, in case it was too diffi-
cult to draw marks with the mouse.

Figure 6: An example of selecting 3 vertices and accept-
ing the selection by making a check-mark.

4.1 Demographics

All of the test subjects had experience in using both
2D and 3D graphics programs. The list of programs
includes Photoshop, GIMP, Illustrator, CorelDraw,
Maya, 3D Studio Max, AutoCAD, and Infini-D. Most
of the programs were noted as having been used before
for more than 10 hours. Only three users wrote that
they used some programs for less than two hours. One
user had prior experience in meshing, but it was not
using CUBIT.

The age group ranges from 19 to 32, where 6 of
the users are male and 4 are female. A majority of
the users are currently students, one being a post-
doctorate, and some of the listed concentrations in-
clude Applied Math, Geophysics, Education, Engi-
neering, and Computer Science. The users who were
not students had job titles such as UI Developer and
media coordinator.

4.2 Ease of Use

Overall. Every user commented that the marking in-
terface outperformed the non-marking interface. All
but one of the users noted, though, that there was a
significant learning curve that had to be overcome be-
fore the marking interface could be effectively used.
About half of the users found that only in the later
examples did the marking interface became easier and
faster. The users agreed that using the marking UI,
commands were more direct. They also appreciated
how the marking interface eliminated the need to know
entity IDs. There was one user who commented that
learning either interface required roughly the same



amount of work but that it would probably be more
worthwhile to learn the marking UI.

Comparison. Both interfaces had their strengths and
weaknesses. We noticed that several users frequently
made a lot of typos in the non-marking UI, but sim-
ilarly, users drew incorrect marks using the marking
UI, especially in cases where the user had to to start
the mark on a particular curve or surface. One of
the noted advantages of the typing interface was the
ability to enter commands without having to actively
look at the graphics window the whole time, although
it sometimes made it harder for users to notice when
they made a typo. Users found the marking UI to be a
lot more intuitive and simpler to perform certain oper-
ations. However, a distinct disadvantage of the mark-
ing UI was bad gesture recognition, which was partic-
ularly noticeable when users wanted to draw gestures
quickly without having to confirm that a command
was correctly selected. Users often executed undesired
operations on the model by accident.

Modes. Half of the users thought that the tool-
bar mode selection of the non-marking UI was more
straightforward for selecting different types of entities,
as opposed to the required double and triple clicking
of the marking UI. The modes of the marking UI was
also confusing to users particularly in cases where a
user had to be in “body selection” mode to cut a body,
but the mark to be drawn had to start on a certain
curve or surface.

4.3 Camera Controls

Non-Marking. About half of the users remarked
that the camera functions of the non-marking UI were
more intuitive than the single button camera (the Uni-
cam [23]) of the marking UI. They had a better im-
mediate understanding of how to navigate by click-
ing toolbar icons for rotating, panning, and zoom-
ing the camera. One user remarked that the con-
trols were almost exactly identical to a CAD program
that this user had previous experience with. The Uni-
cam seemed to be difficult for users that had not used
Unicam-like camera navigation before. Particularly,
a Unicam is supposed to zoom or pan, depending on
whether the user initially drags the mouse horizontally
or vertically, but several users had difficulty in getting
the mouse to initially drag vertically when they wanted
to. One of the users mentioned that it was annoying to
have to first move left or right to pan up or down; the
user preferred moving the mouse directly up or down,
instead of having to first move left or right. Another
user, who had extensive experience using Maya, re-
marked that some “unlearning” of Maya was required
in order to get used to the Unicam controls.

Marking. On the other hand, the use of Unicam also

received much positive feedback from several users in
the study. For instance, one of the users said that
for many operations, the Unicam saved at least a half
second of time that was required in the non-marking
UI when switching between different camera or selec-
tion modes. Another user wanted to use the Unicam
for both the marking and non-marking examples in-
stead of having to resort back to the toolbar icons for
non-marking examples.

4.4 Speed

Typing. About a quarter of the users noted that typ-
ing commands was more direct and faster than having
to learn a gesture mark in order to execute a com-
mand. There were two users who simply preferred
typing over mouse interactions in general, saying that
mouse-drawn commands took too long to learn and
that drawing the shapes of the various gestures was
difficult to remember and do quickly, even with the
reference sheet. One user said that had all of the
IDs and arguments been known ahead of time, the
non-marking UI might have been easier to use for the
particular examples used in the study. A number of
users did also complain, however, about the lengthy
and confusing syntax of some of the commands.

Drawing Marks. The marking interface received
mostly positive feedback. We had one user who had
previous meshing experience, and this user expressed
interest in the concept of the implemented marking
UI. All the users said that the marking UI was harder
to learn. They also commented, though, that with
more practice, the marking UI would be faster than
the non-marking UI. Certain annoyances that users
noted in the non-marking UI include having to type
in ID numbers and having to navigate from window
to window in order to select a toolbar icon, type a
command, or navigate the camera. The marking UI
bundled all of these tasks into the graphics window
alone. In particular, for longer and more repetitive
examples, the marking UI was always preferred over
the non-marking UI. Users commented that such ex-
amples were “tedious” and “painful” to complete using
the non-marking UI. In the post-questionnaire, users
rated the non-marking UI to be between 30-80% slower
than the marking UI.

4.5 Learnability

Previous Experience. Many of the users who had
previous experience in using 3D modeling or CAD pro-
grams commented that the non-marking UI was more
intuitive to initially learn. Comparisons were made to
programs with similar toolbar icon camera functions.
Users also said that it was more obvious what com-
mand was going to be executed using the non-marking



interface. To them, typing in actual commands using
words was more intuitive than having to remember
how to draw shapes or patterns. More than half of
the users also thought that using the keyboard to input
exact numbers was easier than using the slider-based
mechanism of the marking UI. A common complaint
was that there was not enough visual feedback or accu-
racy in using the slider. Users who said that their pre-
vious experience helped them in completing the tasks
mostly said that their background facilitated camera
navigations. Those who had never used a Unicam be-
fore found the Unicam hard to use. Although the hope
for the marking UI was to have it readily learnable by
any user, the eventual target audience will consist of
people who perform decomposition on a regular every-
day basis. Perhaps, we should have limited the user
study to users with more background experience.

Making Marks. The marking UI was difficult to
learn, even with the reference sheet, and we suspect
that there was not enough time for users to become
accustomed to the restrictions and rules for making
marks. At the beginning, many users had to draw
some marks several times before they were able to get
the right command to show up. Most of the users be-
lieved that this problem was a simple matter of prac-
ticing. However, one user commented that the mark-
ing UI was not intuitive at all and that even with ev-
eryday practice, it would be difficult to learn. It should
be noted, though, that the implemented gesture rec-
ognizer can easily be replaced with any other type of
marking-menu or gesture recognition system. A pos-
sibility is using the stroke recognition techniques de-
scribed in [24], which would probably significantly in-
crease the accuracy of the recognition. The quadrant-
based marking UI in this study is only a preliminary
system that was implemented to demonstrate the pos-
sibility of using a marking post-WIMP UI in decompo-
sition. There is a wide range of possibilities for further
expanding and developing the work started here in this
study.

Using the Mouse. About a quarter of the users
found themselves clicking the wrong button while us-
ing the marking UI. Some users had difficulty in re-
membering to use the middle button for camera nav-
igations and the left button for marking commands.
While this is a minor detail, perhaps the learnability
could have been improved had the controls been lim-
ited to one mouse button. Other complaints include
having to hold down the button one second before a
parameter was accepted by the virtual slider. One user
commented that using conventional “OK” and ”Can-
cel” buttons would have sufficed.

Help System. Users thought that the help system
for the marking UI was indeed beneficial, but many
thought that it was insufficient for becoming familiar-

ized with the interface. Two of the users wanted a
more interactive system that updated as marks were
being drawn. Perhaps the number of commands was
simply too overwhelming in the marking UI for novice
users.

4.6 Preference

Nearly all of the users agreed that the command-line
based UI was easier and more intuitive to learn. How-
ever, they pointed out that it was still rather annoy-
ing or frustrating to have to click the toolbar, graphics
window, and then the command-line to execute a sin-
gle command. One of the users pointed out that using
just the mouse for all commands was a lot more con-
venient. For longer examples, all users preferred using
the marking UI. A lot of users still missed the comfort
and familiarity of using the traditional non-marking
WIMP interface, however.

Some of the positive comments about the marking
UI include the ability to make marks directly on the
model, which was a noted improvement over having
to echo ID numbers on the command-line after select-
ing entities. For commands such as cutting by a plane
perpendicular to the x, y, or z axis, cutting by a plane
defined by three vertices, deleting entities, and par-
titioning entities, this was a significant improvement.
Two of the users said that the tasks themselves seemed
inherently visual, and that is why they preferred the
marking UI over the non-marking UI.

More than one user liked the idea of having a hybrid
interface, where there would be a method for switching
between the non-marking and marking UIs, because
according to four of the users, certain tasks seemed
better-suited for one UI than the other. Particularly,
for tasks requiring number values such as fractions or
coordinates, many users wanted to just type in the
desired values as opposed to having to use the slider
in the marking UI. Users also voiced a concern over
not being able to select certain numbers when using
the slider, as the values only change in 0.05 increments.

The marking UI was almost always noted as being
more fun to use, because it was something different
and unconventional, but the non-marking UI received
more votes for being easier to learn and easier to
use. The non-marking UI was straightforward to many
users, although one user acknowledged the method was
“old-fashioned.” Many users were more confident us-
ing the non-marking UI, although two of the 10 users
in the study did not note a significant difference in
the difficulty of either interface; it was noted by all
users that with practice, any implemented UI would
become easier to use. The non-marking UI did receive
more negative feedback in regards to being tedious,
especially on models requiring repetitive steps. Three



Figure 7: An example that was considered tedious by
several users in the user study. Similar operations had to
be done on all six sides of the model. The non-marking
UI received especially negative feedback on this example.

users voiced a need for some more automation on these
models. Figure 7 is an example of such a model.

5. ERROR ANALYSIS

There are several sources of error in the user study.
Discussion of each follows:

First, it is possible that some of the controls were too
sensitive. More than one user believed that some tun-
ing was required, especially mouse movement in slider
number selections. Many of the mouse and gesture
movements could have been further tweaked or ad-
justed to accustom the different ways that users ini-
tially react to and interact with such a system.

Second, it is possible that given more practice with
mesh decomposition or more knowledge about mesh-
ing concepts, the users might have reported differently
on the two interfaces. Most of the users did not know
the purpose or steps behind meshing. A more detailed
explanation of the reason for each step may have con-
tributed to more confident user feedback.

Third, there were several bugs in the prototype code.
Given the focus of the study, these bugs were con-
sidered to be trivial enough to ignore. Some of the
bugs included drawing errors in the graphics window
and erroneously chosen rotation points for the cam-
era. However, had such bugs been fixed perhaps there
would have been more positive feedback regarding vi-
suals in the graphics window, as some users noted not
having enough visuals to confirm or know about what
certain commands or settings were doing in the pro-

gram.

Finally, the Wacom tablet and 3D tracker were also
buggy. In the marking UI, clicks were detected only
when the user did not move the mouse because any
cursor movement during a click implied dragging. The
Wacom tablet was too sensitive in that every time the
user lifted the pen, it would oftentimes report a drag
when the user actually wanted to click. The effective-
ness of the Wacom might also be related to previous
experience; the two users who had experience in us-
ing a Wacom-type of input device were the only ones
who commented on the ease of use for making some
of the marks. As for the 3D tracker, we had prob-
lems in the camera translation. Perhaps the Wacom
tablet and the tracker would have shown better poten-
tial had they been more thoroughly tested and imple-
mented, but they still demonstrated good possibilities
for post-WIMP interfaces in a meshing environment.
Work section.

6. FUTURE WORK

More Visuals. Mark-It’s UI is only one possibil-
ity for a marking UI in a meshing system. Some of
the goals that we wanted to achieve included avoid-
ing unnecessary movement of the mouse and unnec-
essary interaction with the keyboard. Hence, we im-
plemented double and triple clicking at arbitrary loca-
tions to avoid having to move the mouse or press keys
on the keyboard in order switch modes. The same
logic applies to the “1-second accept method”; instead
of requiring the user to have to move the mouse to an
“OK” or “Cancel” button, the user could click wher-
ever the cursor was currently at, and release the mouse
accordingly. One of the major problems of Mark-It’s
interface was a lack of visual feedback. Perhaps had
there been more visual feedback, especially in the “1-
second accept method,” users would have been more
receptive to the idea of not having “OK” and “Can-
cel” buttons. Creating more visuals may be a possible
first step in improving the marking interface.

Hybrid Interface. More than one user expressed
an interest in having some combination of typing and
making marks as one unified user interface. We believe
that such a system may especially be effective for users
who are accustomed to previous programs that utilize
WIMP techniques and wish to slowly transition to or
complement their methods of interaction with a ges-
tural marking interface.

More User Studies. Perhaps a more interesting user
study would have involved implementing and compar-
ing a user interface more comparable to such commer-
cial software programs as Maya, and comparing that
with the currently implemented marking UI. One of
the users remarked that it was rather unfair to com-



pare a command-line based UI to a more state-of-the-
art marking UI. A possibility would be to compare
Mark-It to Tracking Menus [25] or to future versions
of CUBIT.

More Post-WIMP. The Wacom tablet and 3D
tracker showed very good possibilities for future im-
plementations. In respect to the Wacom tablet, two of
the users, who had experience in using pen and tablet
input devices, liked the ease of use and natural motions
of drawing marks by using a pen instead of the mouse.
For the 3D tracker, most of the users commented that
had the tracker been better implemented, they would
have liked to use it more than they did during the
study. This was especially true for the users that dis-
liked the Unicam. One of the inconveniences about the
tracker that was mentioned was having to deal with
the cable getting in the way and making awkward ro-
tations with their wrists. Some users said that they
would have preferred using their non-dominant hand
for doing camera navigations with the tracker while
they did commands with their other hand. Others did
not think a two-handed interface would be beneficial.
The use of these two devices as well as the possibil-
ity of two-handed interfaces in a meshing system can
serve as a basis for other user studies in future work.
Further extensions to the tracking system may involve
stereo viewing and head-tracking.

Better Learning. Finally, future work may also in-
volve studies about improving the learnability of mark-
ing interfaces. The implemented help system only
shows hints about how users should start a mark, but
it does not actively update to show what hints are pos-
sible after drawing a partial mark. A more thorough
and complete system that helps users avoid using the
reference sheet would have been ideal.

7. CONCLUSION

The implemented marking UI has shown the potential
of a post-WIMP marking interface when integrated
with a complex meshing system such as CUBIT. The
marking UI is only one of the many possibilities for
a post-WIMP interface and could be substituted with
variations or entirely different interfaces. An exam-
ple would be using gesture recognition algorithms de-
scribed in [24].

Being able to specify commands and operands by
drawing marks inside the graphics window in the con-
text of the 3D model helped users significantly in
achieving the decomposition goals in less time. In the
non-marking UI, much time was consumed in switch-
ing between different parts of the WIMP GUI. We
believe that marking UIs are scalable and extensible
to other meshing systems, and implementing a mark-
ing UI in other systems would be worthwhile in future

studies.

Although this version of Mark-It is in its early stages
of development, we believe that there is much poten-
tial for post-WIMP UIs in a meshing environment. We
believe future studies should focus on the scalability
of the UI, ability to learn the UI, and evaluating effec-
tiveness.

8. ACKNOWLEDGEMENTS

This work was supported by LLNL Research Subcon-
tract No. B527302. We would like to thank the CU-
BIT team at Sandia National Laboratories for their
continued support and collaboration in this study. We
would like to thank Jon Goldman for his help, includ-
ing feedback and comments on designing the Mark-It
prototype.

References

[1] White D.R., Mingwu L., Benzley S.E., Sjaardema
G.D. “Automated Hexahedral Mesh Generation
by Virtual Decomposition.” Proceedings of the

4th International Meshing Roundtable, pp. 165–
176. Sandia National Laboratories, October 1995

[2] White D.R., Saigal S., Owen S.J. “Meshing Com-
plexity of Single Part CAD Models.” Proceedings

of the 12th International Meshing Roundtable, pp.
121–134. September 2003

[3] van Dam A. “Post-WIMP User Interfaces.” Com-

munications of the ACM, vol. 40, no. 2, 63–67,
1997

[4] Cook W.A., Oakes W.R. “Mapped Methods for
Generating Three-Dimensional Meshes.” Com-

puters in Mechanical Engineering, pp. 67–72. Au-
gust 1982

[5] Staten M.L., Canaan S.A., Owen S.J. “BM-
SWEEP: Locating Interior Nodes During Sweep-
ing.” Proceedings of the 7th International Mesh-

ing Roundtable, pp. 7–18. Sandia National Labo-
ratories, October 1998

[6] Knupp P. “Next-Generation Sweep Tool: A
Method for Generating All-Hex Meshes On
Two-And-One-Half Dimensional Geometries.”
Proceedings of the 7th International Meshing

Roundtable, pp. 505–513. Sandia National Lab-
oratories, October 1998

[7] White D.R., Tautges T.J. “Automatic Scheme
Selection for Toolkit Hex Meshing.” International

Journal for Numerical Methods in Engineering,
vol. 49, no. 1, 127–144, September 2000

[8] Blacker T. “The Cooper Tool.” Proceedings of the

5th International Meshing Roundtable, pp. 13–29.
Sandia National Laboratories, October 1996



[9] Mingwu L., Benzley S.E., Sjaardema G., Taut-
ges T. “A Multiple Source and Target Sweeping
Method for Generating All Hexahedral Finite El-
ement Meshes.” Proceedings of the 5th Interna-

tional Meshing Roundtable, pp. 217–225. Sandia
National Laboratories, October 1996

[10] Shepherd J., Mitchell S.A., Knupp P., White D.
“Methods for MultiSweep Automation.” Proceed-

ings of the 9th International Meshing Roundtable,
pp. 77–87. Sandia National Laboratories, October
2000

[11] White D.R., Saigal S., Owen S.J. “CCSweep:
Automatic Decomposition of Multi-Sweep Vol-
umes.” 4th Symposium on Trends in Unstructured

Mesh Generation. July 2003

[12] Lu Y., Gadh R., Tautges T. “Volume Decompo-
sition and Feature Recognition For Hexahedral
Mesh Generation.” Proceedings of the 8th Inter-

national Meshing Roundtable. 1999

[13] Gross M.H., Gatti R., Staadt O. “Fast Multireso-
lution Surface Meshing.” Proceedings of the IEEE

Visualization ’95, pp. 135–142. IEEE Computer
Society Press, 1995

[14] Yamada A., Inoue K., Itoh T., Shimada K. “An
Approach for Generating Meshes Similar to a Ref-
erence Mesh.” Proceedings of the 9th Interna-

tional Meshing Roundtable, pp. 101–107. Sandia
National Laboratories, October 2000

[15] Walton K.S., Benzley S.E., Shepherd J.F.
“Sculpting: An Improved Inside-Out Scheme For
All-Hexahedral Meshing.” Proceedings of the 11th

International Meshing Roundtable, pp. 153–159.
Sandia National Laboratories, September 2002

[16] Tchon K.F., Hirsch C., Schneiders R. “Octree-
Based Hexahedral Mesh Generation For Vis-
cous Flow Simulations.” 13th AIAA Compu-

tational Fluid Dynamics Conference, AIAA-97-
1980. AIAA, June 1997

[17] Marechal L. “A New Approach to Octree-Based
Hexahedral Meshing.” Proceedings of the 10th

International Meshing Roundtable, pp. 209–221.
Sandia National Laboratories, October 2001

[18] Schneiders R. “Octree-Based Hexahedral Mesh
Generation.” International Journal of Computa-

tional Geometry and Applications, vol. 10, no. 4,
383–398, 2000

[19] Zeleznik R.C., Herndon K.P., Hughes J.F.
“SKETCH: An Interface for Sketching 3D
Scenes.” Proceedings of SIGGRAPH’96, pp. 163–
170. 1996

[20] Forsberg A.S., Dieterich M., Zeleznik R.C. “The
Music Notepad.” ACM Symposium on User In-

terface Software and Technology, pp. 203–210.
1998

[21] Kurtenbach G., Buxton W. “User Learning and
Performance with Marking Menus.” Proceedings

of the CHI94, pp. 258–264. 1994

[22] Kurtenbach G., Sellen A., Buxton W. “An Em-
pirical Evaluation of Some Articulatory and Cog-
nitive Aspects of “Marking Menus”.” Journal of

Human Computer Interaction, vol. 8, no. 1

[23] Zeleznik R., Forsberg A. “Unicam 2D Gestural
Camera Controls for 3D Environments.” Pro-

ceedings of the 1999 symposium on Interactive 3D

graphics, pp. 169–173. ACM Press, 1999

[24] Lopresti D., Tomkins A., Zhou J. “Algorithms for
Matching Hand-Drawn Sketches.” Proceedings of

the 5th International Workshop on Frontiers in

Handwriting Recognition, pp. 233–238. 1996

[25] Fitzmaurice G., Khan A., Pieke R., Buxton B.,
Kurtenbach G. “Tracking menus.” Proceedings of

the 16th Annual ACM Symposium on User Inter-

face Software and Technology, pp. 71–79. ACM
Press, 2003

9. APPENDIX

The figures in this section show operations that were
implemented in Mark-It.

Figure 8: Curve operations.



Figure 9: Body operations.

Figure 10: Marks that are specific to various modes re-
lated to body selections.

Figure 11: Surface operations.

Figure 12: Marks that are specific to modes related to
surface selections.


